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Statistical agencies collect data under a 

pledge of confidentiality.

We pledge:

 Collected data will be used only for statistical purposes. 

 Collected data will be kept confidential.

 Data from individuals or establishments

won’t be identifiable in any publication.

Fines and prison await any Census Bureau employee who 

violates this pledge.
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Statistical agencies are trusted curators. 
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Respondents

Age Sex Race/MS

8 FBS

18 MWS

24 FWS

30 MWM

36 FBM

66 FBM

84 MBM

Confidential 

Database
Published Statistics

#
Median

Age

Mean

Age

Total 7 30 38

Women 4 30 33.5

Male 3 30 44

Black 4 51 48.5

White 3 24 24

Married 4 51 54

Black F 3 36 36.7



We now know “trusted curator” model is more complex.

Every data publication results in some privacy loss.

Publishing too many statistics results in the compromise of 

the entire confidential database. 
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Consider the statistics from a single household
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Count Median Mean

Total 1 24 24

# Female 1 24 24

# white 1 24 24

Single 1 24 24

White F 1 24 24

24 yrs Female White Single (24 FWS)



Publishing statistics for this household alone would result in 

an improper disclosure. 
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Count Median Mean

Total (D) (D) (D)

# Female (D) (D) (D)

# white (D) (D) (D)

Single (D) (D) (D)

White F (D) (D) (D)

24 yrs Female White Single (24 FWS) (D) Means suppressed to 

prevent an improper disclosure.



In the past, statistical agencies aggregated data from 

many households together into a single publication.
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Count
Median

Age

Mean

Age

Total 7 30 38

# Female 4 30 33.5

# male 3 30 44

# black 4 51 48.5

# white 3 24 24

Married 4 51 54

Black F 3 36 36.7



We now know that this publication can be 

reverse-engineered to reveal the confidential database.
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Count Median Mean

Total 7 30 38

# Female 4 30 33.5

# male 3 30 44

# black 4 51 48.5

# white 3 24 24

Married 4 51 54

Black F 3 36 36.7

8 FBS 18 MWS

30 MWM & 36 FBM

24 FWS

66 FBM & 84 MBM

This table can be expressed by 164 equations.

Solving those equations takes

0.2 seconds on a 2013 MacBook Pro.



Faced with “database reconstruction,” 

statistical agencies have just two choices.

Option #1: Publish fewer statistics.

Option #2: Publish statistics with less accuracy. 
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The problem with publishing fewer statistics: 

it’s hard to know how many statistics is “too many.”
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Count Median Mean

Total 7 30 38

# Female 4 30 33.5

# male 3 30 44

# black 4 51 48.5

# white 3 24 24

Single XXXX XXXX XXXX

Married 4 51 54

Black F 3 36 36.7

Black M XXXX XXXX XXXX

White M XXXX XXXX XXXX

White F XXXX XXXX XXXX

Solution #1

8 FBS

18 MWS

24 FWS

30 MWM

36 FBM

66 FBM

84 MBM

Solution #2

2 FBS

12 MWS

24 FWS

30 MBM

36 FWM

72 FBM

90 MBM



Faced with “database reconstruction,” 

statistical agencies have just two one choice.

Option #1: Publish fewer statistics.

Option #2: Publish statistics with less accuracy. 
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Tradeoff between Accuracy and Privacy Loss

No privacy
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Differential privacy gives us a mathematical approach 

for balancing accuracy and privacy loss.



“Differential privacy” is really two things

1 – A mathematical definition of privacy loss.

2 – Specific mechanisms that allow us to:

Add the smallest amount of noise necessary for a given privacy outcome

Structure the noise to have minimal impact on the more important statistics
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Differential privacy — the big idea:

Use “noise” to create uncertainty about private data.
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24 yrs Female White Single (24 FWS) N
O

IS
E

 B
A

R
R

IE
R

35 yrs Female Black Single (35 FBS)

Impact of the noise ≈ impact of a single person

Impact of noise on aggregate statistics

decreases with larger population.



Understanding the impact of “noise:”

(Statistics based on 10,000 experiments, epsilon=1.0)
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50% runs 95% runs

Median(age): 9 → 73 Median(age): 0→ 104

Median(age): 17 → 61 Median(age): 0→ 103

Median(age): 21 → 22 Median(age): 21→ 22

N
O

IS
E

 B
A

R
R

IE
R

10 people, all age 22

100 people, all age 22

1 person age 22



The noise also impacts the person counts.
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50% runs 95% runs

Median(age): 9 → 73

# people: -9 → 11

Median(age): 0→ 104

# people: -29 → 30

Median(age): 17 → 61

# people: 0 → 20

Median(age): 0→ 103

# people: -19 → 38

Median(age): 21 → 22

# people: 90 → 110

Median(age): 21→ 22

# people: 71 → 129

N
O

IS
E

 B
A

R
R

IE
R

10 people, all age 22

100 people, all age 22

1 person age 22



The 2020 census and differential privacy
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The Disclosure Avoidance System allows the Census 

Bureau to enforce global confidentiality protections.

Census 

Unedited 

File 

Census 

Edited File

Microdata 

Detail File

Pre-specified 

tabular 

summaries: 

PL94-171, DHC, 

detailed DHC

Special 

tabulations and 

post-census 

research

Decennial 

Response 

File

Global 

Confidentiality 

Protection Process

Disclosure 

Avoidance System

Privacy-loss Budget,

Accuracy Decisions
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DRF CUF MDFCEF

Confidential data Public data

DAS



The Disclosure Avoidance System relies on injects 

formally private noise.

Advantages of noise injection with formal privacy:

 Transparency: the details can be explained to the public 

 Tunable privacy guarantees

 Privacy guarantees do not depend on external data

 Protects against accurate database reconstruction

 Protects every member of the population

Challenges:

 Entire country must be processed at once for best accuracy

 Every use of confidential data must be tallied in the privacy-loss budget

Global 

Confidentiality 

Protection Process

Disclosure 

Avoidance System

ε
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There was no off-the-shelf system for applying 

differential privacy to a national census

We had to create a new system that:

 Produced higher-quality statistics at more densely populated geographies

 Produced consistent tables

We created new differential privacy algorithms and processing systems that:

 Produce highly accurate statistics for large populations (e.g. states, counties)

 Create privatized microdata that can be used for any tabulation without 
additional privacy loss

 Fit into the decennial census production system
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The 2020 DAS produces highly accurate data 

when blocks are aggregated into tracts

95% accuracy

99% accuracy

“epsilon” — the privacy loss parameter



What is the correct value of epsilon?

Where should the accuracy be allocated?

Two public policy choices:
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For more 

information…
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Communications of ACM March 2019

Garfinkel & Abowd

Can a set of equations keep 

U.S. census data private?

By Jeffrey Mervis

Science

Jan. 4, 2019 , 2:50 PM

http://bit.ly/Science2019C1

https://www.sciencemag.org/author/jeffrey-mervis


More Background on the 2020 Disclosure Avoidance 

System

September 14, 2017 CSAC (overall design)
https://www2.census.gov/cac/sac/meetings/2017-09/garfinkel-
modernizing-disclosure-avoidance.pdf

August, 2018 KDD’18 (top-down v. block-by-block)
https://digitalcommons.ilr.cornell.edu/ldi/49/

October, 2018 WPES (implementation issues)
https://arxiv.org/abs/1809.02201

October, 2018 ACMQueue (understanding database reconstruction) 
https://digitalcommons.ilr.cornell.edu/ldi/50/ or
https://queue.acm.org/detail.cfm?id=3295691
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